Inference problems for vector linear time series models

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Time Series Models and Inference

Overview In contrast to the classical linear regression model, in which the components of the dependent variable vector y are not identically distributed (because its mean vector varies with the regressors) but may be independently distributed, time series models have dependent variables which may be identically distributed, but are typically not independent across ovbservations. Such models ar...

متن کامل

Warped-Linear Models for Time Series Classification

This article proposes and studies warped-linear models for time series classification. The proposed models are time-warp invariant analogues of linear models. Their construction is in line with time series averaging and extensions of k-means and learning vector quantization to dynamic time warping (DTW) spaces. The main theoretical result is that warped-linear models correspond to polyhedral cl...

متن کامل

Bayesian time series models and scalable inference

With large and growing datasets and complex models, there is an increasing need for scalable Bayesian inference. We describe two lines of work to address this need. In the first part, we develop new algorithms for inference in hierarchical Bayesian time series models based on the hidden Markov model (HMM), hidden semi-Markov model (HSMM), and their Bayesian nonparametric extensions. The HMM is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1972

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700045330